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1. Introduction and summary

In the wake of the second string revolution ten years ago, we have been left with a satisfying

picture of a unique theory, with different string vacua connected by a web of dualities. It is

somewhat ironic, however, that in the process of establishing that string theory is a unique

theory, it was also discovered that this unique theory — provisionally called “M-theory” —

is not always a theory of fundamental strings. Despite much progress in our understanding

of M-theory in the last ten years, the nature of its degrees of freedom is still rather elusive,

representing one of the major challenges of the field.

Ultimately, we wish to understand the landscape of all possible solutions of the theory.

However, it is difficult to imagine how this would be possible in the absence of a clear

understanding of the nature of the underlying degrees of freedom. On another note, it has

long been suspected that the physical spacetime in quantum gravity should emerge as a

derived concept. A more precise realization of this hope would also seem to require access

to more fundamental degrees of freedom of quantum gravity.

In this paper, we will address these issues in the highly controlled (indeed, exactly solv-

able) context of noncritical string theories in two spacetime dimensions [1]–[8], as defined

via their matrix model formulation [9]–[13]. We shall find that noncritical string theories

are also connected in a larger framework, of a theory in 2+ 1 dimensions which we refer to

as “noncritical M-theory”. We give an exact, nonperturbative definition of this noncritical

M-theory, from which many exact results can be obtained. In the process, we will get our

first glimpse into the fundamental degrees of freedom in M-theory, at least in its 2 + 1-

dimensional incarnation: Noncritical M-theory is a theory of double-scaled nonrelativistic

– 2 –
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fermions in 2 + 1 dimensions. This exact formulation of noncritical M-theory will allow

us to understand in detail the entire space of solutions of the theory, the space frequently

represented in full M-theory by the well-known “starfish” diagram.

The organization and outline of this paper are as follows. After a brief review of non-

critical Type 0A and 0B strings in 1+1 dimensions in section 2.1, we present our definition

of noncritical M-theory in terms of a double-scaled Fermi liquid in 2 + 1 dimensions in

section 2.2. In particular, we propose to identify the extra dimension of M-theory with

the angular dimension on the plane populated by the nonrelativistic fermions. The theory

is further developed in section 3, where we also discuss the moduli space of all solutions

of the theory, as well as the connection between the existence of hydrodynamic degrees of

freedom and the existence of a semiclassical spacetime description of a given solution. In

section 4, we reproduce the linear dilaton vacua of two-dimensional Type 0A and 0B non-

critical string theories as solutions of noncritical M-theory. In section 5, we introduce the

natural M-theory vacuum. First we analyze the scaling at the leading order in large N and

identify the natural scaling variable µ, and then define the nonperturbative double-scaling

limit of this vacuum.

Section 6 contains some of the central results of this paper. In particular, we present

an exact calculation of the vacuum energy of the M-theory vacuum solution, as a function

of the scaling variable µ. The exact formula for the vacuum energy turns out to be one-

loop exact (in perturbation theory in the powers of 1/µ ∼ κ2/3), with an infinite series of

instanton-like corrections, each of which is also one-loop exact. This result is suggestive of

a possible topological nature, or at least localization of the path integral, of noncritical M-

theory. In section 7 we point out that the exact formula for the vacuum energy suggests a

dual interpretation, in terms of the Debye model of a quantum crystal at finite temperature

set by the string scale. In fact, µ controls how many atoms have been removed from a large

Debye crystal, leading to an interpretation in terms of crystal melting.

In section 8 we address two more general aspects of noncritical M-theory: Its ob-

servables and symmetries. A particularly natural observable is given by the density of

eigenvalues. This observable is the M-theory analog of the massless tachyon from non-

critical string theories. The theory is shown to exhibit an infinite W symmetry algebra.

Section 9 develops a general framework for identifying “good” hydrodynamic solutions of

the theory, for which a spacetime description should be possible. We formulate the classical

hydrodynamic equation of motion for the Fermi surface, and present several simple static

solutions of this equation. A surprising duality to the thermofield dynamics of fermions in

the rightside-up harmonic oscillator potential is found. Section 10 continues the analysis

by introducing a general class of time-dependent solutions of the Fermi surface equations

of motion. Among the time-dependent solutions, we find classes representing a dynamical

change of the spacetime dimension. In particular, there are solutions describing the decay

of a 1 + 1-dimensional string theory vacuum to another one via an intermediate 2 + 1-

dimensional M-theory phase. Section 11 concludes with some general remarks and some

open questions.
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2. From noncritical strings to noncritical M-theory

Our starting point is the matrix model formulation of various noncritical strings in two

spacetime dimensions. We concentrate on the Type 0A and 0B superstrings [1, 2], but

our analysis can be easily extended to include other vacua, such as the Type II or bosonic

strings in two dimensions.

2.1 Type 0A and 0B strings in two dimensions

This is not the right place for a lengthy overview of two-dimensional strings, and we only

highlight some basic aspects as needed for the rest of the paper. Excellent extensive reviews

of the subject exist, see, e.g., [3]–[8].

Type 0 superstrings are defined via a double-scaling limit of the Euclidean matrix path

integral

Z =

∫
DM(t)e−S(M). (2.1)

In Type 0B theory [2, 1], the action is given by

S0B(M) = βN

∫
dt Tr

(
1

2
(DtM)2 + V (M)

)
. (2.2)

M is a Hermitian N × N matrix, Dt is the covariant derivative with respect to a U(N)

gauge field A0, and β is a coupling constant which can be conveniently reabsorbed into M .

The Type 0A superstring similarly corresponds to a quiver matrix mechanics [1],

S0A(M,M †) = βN

∫
dt

(
Tr [(DtM)†DtM + V (M,M †)]

)
. (2.3)

In this case, M is an N ×(N +q) complex matrix, and the gauge group is U(N)×U(N +q).

q is interpreted as the net D0-brane charge or, alternatively, the value of the RR two-form

flux in the vacuum. M is the matrix of open-string tachyon modes on the system of N + q

D0-branes and N anti D0-branes in Type 0A theory, or N unstable D0-branes in the Type

0B matrix model, along the lines of [9].

The universal part of the potential is

V (M) = −1

2
ω2

0M
2 + . . . . (2.4)

Here the “. . .” stand for stabilizing, nonuniversal terms in the potential, and ω0 is the

fundamental frequency scale of the theory. In Type 0A and 0B string theories, this funda-

mental frequency sets the string scale, ω0 = 1/
√

2α′.

In the singlet sector, the matrix models reduce to a theory of N free fermions, repre-

senting the locations of N eigenvalues yα, α = 1, . . . , N of M along a spatial dimension

y. The ground state of this system corresponds to all states filled up to a (negative) Fermi

energy εF . The second-quantized Hamiltonian is

H = βN

∫
dy

(
− 1

2(βN)2
∂yψ

†∂yψ + V (y)ψ†ψ

)
. (2.5)

– 4 –



J
H
E
P
0
7
(
2
0
0
7
)
0
5
9

Clearly, the role of the Planck constant is played by ~ ≡ 1/(βN).

The double-scaling limit of the system corresponds to taking the N → ∞ limit with

εF → 0 while keeping µ ≡ −NεF fixed. It is convenient to introduce the rescaled spatial

dimension λ,

λ =
√

βN y. (2.6)

After the double-scaling limit, the single-particle equation becomes

(
−1

2

∂2

∂λ2
+ V (λ)

)
ψ(λ) = νψ(λ), (2.7)

where ν is the double-scaled energy eigenvalue, and

V (λ) =




−1

2ω2
0λ

2 for Type 0B,

−1
2ω2

0λ
2 +

(q2− 1

4
)

λ2 for Type 0A.
(2.8)

The careful definition of the double-scaling limit involves introducing a nonuniversal sta-

bilizing regulator Λ, which we will represent by cutting off the potential by an infinite

wall at y ∼ 1. In the double-scaled variable λ, this amounts to placing an infinite wall at

λ =
√

2Λ ∼
√

N .1

Since ~ is proportional to 1/N , the large N limit that we are interested in corresponds

to the semiclassical limit of the system. In the WKB approximation, the semiclassical

fermions occupy a certain area in phase space, and we have

N =

∫
dp dλ

2π~
θ

(
εF − p2

2
− V (λ)

)
. (2.9)

In a given static vacuum state, one of the main quantities of interest to calculate is

the vacuum energy

F = lim
T →∞

(
− 1

T logZ
)

, (2.10)

with T is the total length of the Euclidean time dimension. In the limit of T → ∞, this is

reduced to the evaluation of the energy of the ground state,

F =
E0

~
=

1

~

N∑

k=1

νk, (2.11)

the sum being performed up to the Fermi energy NεF ≡ νN . In the double-scaling limit,

F represents (a nonperturbative completion of) the string partition function, and can be

expanded to match the perturbative sum over all worldsheet topologies, i.e., over all genera

of connected Riemann surfaces. It can be exactly evaluated by first defining the density of

states ρ(µ),

ρ(µ) = ~

∑
δ(−µ − νn), (2.12)

1For a clear discussion of the technical details of the double-scaling limit, see, e.g., [14].
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and observing that in terms of ρ(µ), we have

∂F

∂∆
=

1

π
µ,

∂∆

∂µ
= πρ(µ). (2.13)

Here ∆ is another scaling variable, usually referred to in the matrix models of noncritical

strings as the “worldsheet cosmological constant.” The logarithmic scaling ρ(µ) ∼ log µ

is a signature behavior of two-dimensional string theory [10]. With the use of (2.13), this

behavior implies for the expansion of F in the powers of the string coupling gs ∼ 1/µ

F (µ) ∼ µ2 ln µ + ln µ + O(1/µ2). (2.14)

The log terms come from the leading log µ behavior of the density of states, and are char-

acteristic of noncritical string theory in two dimensions (in the linear dilaton background,

screened by the Liouville wall). The string coupling is determined via µ ∼ g−1
s , and the

two terms have a clear interpretation: While the first one is the tree-level contribution

from worldsheets of spherical topology, the second term is a one-loop contribution from

the torus. The log µ term — or, more exactly, log(Λ/µ) with Λ the cutoff — is properly

interpreted as the volume of the Liouville dimension.

The theory is nonperturbatively fully defined via its free-fermion formulation. A non-

local transform maps the eigenvalue coordinate to the physical spacetime, in which the

systems can be understood in terms of a spacetime effective theory of strings. However,

this transformation only exists under special circumstances, when the N fermions are dis-

tributed such that the quantum state of the Fermi system can be bosonized in terms of

hydrodynamic degrees of freedom, such as the fluctuations of the Fermi surface. These

fluctuations then correspond in the physical spacetime picture to the massless tachyon

(and, in Type 0B, the RR scalar) of noncritical string theory.

2.2 Introducing noncritical M-theory

The spectrum of noncritical Type 0A string theory contains stable D0-branes, which couple

to a RR one-form gauge field. It admits vacua with a nonzero value of the RR flux q. This

flux can also be interpreted as the net number of D0-branes sustaining the background.

In the matrix model, q is represented as the difference between the number of rows and

columns of M .

In the critical Type IIA superstring, stable D0-branes are interpreted as KK momentum

modes along a hidden, eleventh dimension of M-theory. It is natural to ask whether a similar

interpretation can be found for the stable D0-branes of the noncritical Type 0A theory,

perhaps leading to a noncritical version of M-theory in 2+1 dimensions. This question can

be addressed from several points of view. For example, one can try to identify the lift of

the effective spacetime action of Type 0A theory to an effective theory in 2+1 dimensions.

Alternatively, one can search for an implementation of the lift to M-theory directly in the

matrix model. In this paper, we will circumvent some apparent difficulties with these two

approaches, by addressing the question directly in the language of the second-quantized

double-scaled fermions.
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It has been observed in [1] that the eigenvalue coordinate λ of the Type 0A matrix

model can be thought of as the radial coordinate on a two-dimensional plane (which we

will refer to as the “eigenvalue plane” from now on). From this viewpoint, the Type 0A

vacuum at fixed RR flux q can be interpreted as the sector with fixed angular momentum

J = q in a 2 + 1 dimensional theory of fermions on the eigenvalue plane. Since one unit of

the D0-brane charge corresponds to one unit of the angular momentum, this leads us to a

natural lift of the Type 0A vacua to M-theory:

We propose to identify the extra dimension of noncritical M-theory with the angular

variable on the eigenvalue plane of the double-scaled nonrelativistic Fermi system in the

upside-down harmonic potential.

The remainder of this paper can be viewed as a series of tests justifying this definition

of noncritical M-theory and its proposed relation to the dynamics of noncritical strings.

2.2.1 A parable on the relation between the radius and the string coupling

At first, the proposed identification of the third dimension of M-theory with the angular

dimension on the eigenvalue plane may seem somewhat counterintuitive. It suggests that

the weakly coupled region in Type 0A string theory is associated with the region where

the radius of the angular S1 dimension of noncritical M-theory is large; similarly, the

strongly coupled regime of string theory corresponds to the region near the origin on the

eigenvalue plane where the radius of the angular S1 is small. In contrast, critical M-theory

in eleven dimensions relates the strong string coupling regime to the large extra dimension

of M-theory.

In order to illustrate that the intuition based on eleven-dimensional M-theory may be

incorrect in low enough dimensions, consider the following parable, which begins with the

Einstein-Hilbert action in D spacetime dimensions Xµ,

S =
1

GD

∫
dDX

√
GR(G), (2.15)

with Gµν the spacetime metric and GD the Newton constant. We compactify to D − 1

dimensions on S1, parametrized by coordinates (Xµ) = (xi, Y ), i = 1, . . . D − 1, with

Y = Y + 2π. The metric can be decomposed as

GµνdXµdXν = e2aΦgijdxidxj + e2bΦdY 2, (2.16)

where Φ is a scalar field (to be identified with the string theory dilaton), gij is the (string

frame) metric in D − 1 spacetime dimensions, and a and b are constants to be determined

below. We shall only keep the zero modes of all fields on S1, and for simplicity also drop

the off-diagonal, Abelian gauge field part of Gµν . Using this decomposition (2.16), the

Einstein-Hilbert action (2.15) becomes

S =
2π

GD

∫
dD−1x

√
g

(
e[(D−3)a+b]ΦR(g) + . . .

)
, (2.17)

where “. . .” refer to terms that depend on the derivatives of Φ, and R(g) is the scalar

curvature of the lower-dimensional metric gij .
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If (2.17) is to be the leading term of the effective string-theory action in the string

frame, with Φ the conventionally normalized dilaton (i.e., eΦ = gs), the power of eΦ in (2.17)

must equal −2, implying

(D − 3)a + b = −2, gs = eΦ, RD = ebΦ, (2.18)

where the third relation — between the radius RD of the extra dimension measured in the

D-dimensional Planck units and the dilaton — follows from (2.16). When D = 3, the first

equation in (2.18) implies that b = −2, independently of the value of a. Generally, one

more relation is needed to determine the value of a; this extra relation could for example

come from the requirement that the kinetic term of Φ be correctly normalized, or from a

different constraint. In any case, in D = 3 we do not need to know a to make our point:

Since b = −2 in D = 3, the second and third relation in (2.18) imply that the size of

the third dimension, measured in the three-dimensional Planck units, comes out inversely

proportional to the square of the string coupling,

R3 ∼ G3

g2
s

. (2.19)

Thus, we see that in the reduction of the simple Einstein-Hilbert Lagrangian from three

to two dimensions, the large radius of the extra dimension of M-theory corresponds to the

weak string coupling constant, while the strong string coupling regime is described by the

small radius of the M-theory dimension. This may be counterintuitive from the viewpoint

of the critical M-theory in eleven dimensions, but seems compatible with the possibility

of interpreting the third dimension of noncritical M-theory as the angular dimension on a

plane.

Of course, our simple parable has at least two caveats: First of all, the eigenvalue plane

should not be directly identified with the physical spacetime. Instead, they should be re-

lated by a nonlocal transform analogous to the tranform between the eigenvalue dimension

and the Liouville dimension in noncritical string theory. Secondly, the full effective action

of noncritical M-theory in the physical three-dimensional spacetime is likely to be much

more complicated than the simple Einstein-Hilbert Lagrangian considered in the parable.

3. Nonperturbative M-theory as a double-scaled Fermi liquid

Now we can systematically develop the theory from first principles, and check that it leads

to sensible results.

We start with a nonrelativistic spinless Fermi field Ψ̂(t, y1, y2) in 2 + 1 dimensions,

before double scaling. In the double scaling limit, Ψ̂ turns into a double-scaled Fermi field

Ψ(t, λ1, λ2), described by the action

SM =

∫
dt d2λ


iΨ† ∂Ψ

∂t
− 1

2

∑

i=1,2

∂Ψ†

∂λi

∂Ψ

∂λi
+

1

2
ω2

0

∑

i=1,2

λ2
i Ψ

†Ψ + . . .


 . (3.1)

Here the “. . .” stand for nonuniversal regulating and stabilizing terms in the potential. We

will represent them by an infinite wall placed at λ =
√

2Λ/ω0. In the units where ~ is

– 8 –
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dimensionless, the basic variables ω0, t, λi, and the momentum pi conjugate to λi have

dimensions 1, −1, −1/2 and 1/2, respectively. Until further notice, we will Wick rotate t

and interpret it as the Euclidean time coordinate.

3.1 First thoughts on the double-scaling limit

The double-scaling limit has two ingredients, which are not always clearly separated in the

studies of two-dimensional string theory. Both steps are performed simultaneously, but the

first step is more universal while the second one is specific to a given solution.

(1) Eliminate the nonuniversal features of the potential, represented by the cutoff depen-

dence, and take the large-N limit;

(2) Choose a state, i.e., a distribution of N fermions among the available states, whose

double-scaling limit is taken. Identify the scaling variable to be held fixed as N → ∞.

Typically, the scaling variable is a combination of N and a conserved quantity such

as the energy of the Fermi surface or its angular momentum.2

Some simple modifications of this process can be easily implemented, one example

being the situation when we do not hold the number of fermions N fixed, but instead fix

a chemical potential. We will not distinguish such modifications from our prescription.

3.2 Quantum mechanics of the double-scaled Fermi liquid

The theory can be easily quantized. There are two useful representations. In the first one,

we use the Cartesian coordinates λi, and view the system as two decoupled upside-down

harmonic oscillators. In this representation, the second-quantized Fermi field Ψ can be

expanded in terms of products of Type 0B wavefunctions as follows,

Ψ(t, λi) =

∫
d2ν

∑

s1,s2=±
as1s2

(ν1, ν2)ψs1
(ν1, λ1)ψs2

(ν2, λ2) e−i(ν1+ν2)t, (3.2)

where νi are the energy levels of the two one-dimensional upside-down oscillators, and

si = ± are the parity quantum numbers of the Type 0B wavefunctions. The annihilation

operators as1s2
(ν1, ν2) and their conjugates satisfy the canonical anticommutation relations,

{as1s2
(ν1, ν2), a

†
s′
1
s′
2

(ν ′
1, ν

′
2)} = δs1s′

1
δs2s′

2
δ2(νi − ν ′

i). (3.3)

Alternatively, we can use a representation in terms of polar coordinates λ, θ on the

eigenvalue plane, expanding Ψ in a complete basis of Type 0A wavefunctions

Ψ(t, λi) =
∑

q∈Z

eiqθ

∫
dν aq(ν)ψq(ν, λ) e−iνt, (3.4)

supplemented with the canonical commutation relations

{aq(ν), a†q′(ν
′)} = δqq′δ(ν − ν ′). (3.5)

2We define the Fermi surface more generally as the boundary between the filled and empty regions in

phase space.
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In these formulas, q is the value of the Type 0A RR flux, interpreted in the M-theory context

as the angular momentum on the eigenvalue plane. The Type 0A and 0B wavefunctions

ψs1s2
(ν1, ν2) and ψq(ν) are given explicitly in terms of cylindric Whittaker functions [3, 15,

18].

3.3 The moduli space of solutions

The simplicity of the quantum mechanics of the double-scaled Fermi system allows us to

make some general remarks about the space of all solutions of noncritical M-theory. These

observations will be illustrated in specific examples in the rest of the paper.

In the double scaling limit, the nonuniversal anharmonic pieces in the potential are

scaled away, and the double-scaled Fermi theory becomes free. This leads to a particu-

larly simple description of all possible quantum states in this theory. In order to specify

a quantum state |phys〉, we simply need to decide how each canonical pair of oscillators

a, a† acts on |phys〉. Any quantum state that can be prepared by the infinite collection of

fermionic oscillators is a solution of noncritical M-theory. Most such states will not have

a clear semiclassical description in terms of collective bosonic degrees of freedom, since

generally each canonical pair can act on |phys〉 in a way uncorrelated with the action of

the other pairs. Only those states for which the fermionic oscillators act in a highly cor-

related way will exhibit semiclassical hydrodynamic bosonic excitations. We will refer to

such states generically as “hydrodynamic states.” We expect that the excitations of such a

hydrodynamic state can be described in terms of an effective action for the fluctuations of

the hydrodynamic bosonic variables (such as the bosonic fluctuations of the Fermi surface,

whenever the latter can be defined). Only states that can be so bosonized can be de-

scribed in terms of low-energy quantum gravity in a semiclassical spacetime. The physical

spacetime itself is an emergent property of the hydrodynamic states, and is related in a

complicated nonlocal way to the eigenvalue plane on which the fermions reside.

It is worth noting that our definition of noncritical M-theory in terms of free fermions

leads to a very precise refinement of the famous “starfish diagram,” traditionally drawn to

illustrate the space of all vacua in critical string/M theory. This starfish diagram usually

depicts several asymptotic corners, in which perturbative string/M-theory descriptions

are available, connected into a single moduli space whose middle portion remains rather

mysterious. In contrast, as we have just argued, the problem of identifying the space of

all solutions in our noncritical M-theory is effectively reduced to a simple, mathematically

well-posed problem, essentially equivalent to the representation theory of the algebra of

the inifinite set of decoupled canonical fermionic oscillators a†q(ν) and aq(ν).

In this picture, the spacetime effective field theory description is effectively equivalent

to the hydrodynamics of the Fermi liquid. Whether or not an effective bosonization to a

spacetime description exists, however, the physics of any given solution is always nonper-

turbatively fully defined by the underlying fundamental degrees of freedom of noncritical

M-theory, the double-scaled nonrelativistic free fermions on the eigenvalue plane. Different

quantum vacua of the system correspond to different separable Hilbert spaces that can be

built as fermionic Fock spaces from a given ground state. This leads to an intricate picture

of a web of Hilbert spaces, representing all possible ways in which the N fermions can
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occupy the available single-particle states while the double-scaling limit is taken. Some

such states represent static vacuum solutions, others will describe excited states in such

vacua (i.e., they belong to the Hilbert space for which the corresponding vacuum state is

the ground state). Some solutions will be time dependent, interpolating between different

static vacua at early and late times. Yet others may represent big-bang/big-crunch cos-

mologies, evolving from/to M-theory states with no conventional semiclassical spacetime

interpretation. Some may have a 2+1-dimensional spacetime, some reduce to string vacua

in a 1 + 1-dimensional spacetime. Some solutions will have a dynamically changing space-

time dimension, evolving for example from 1 + 1 at early times via 2 + 1 at intermediate

times to 1 + 1 at late times, etc. Some simple examples of such classes of solutions will

be discussed below, but many more can be identified and studied within this rich and

mathematically well-defined “landscape of all vacua” of noncritical M-theory.

4. Examples of solutions I: Type 0A and 0B strings from M-theory

As a first check that our definition of noncritical M-theory is acceptable, we shall reproduce

known Type 0A and 0B vacua as its solutions.

4.1 Type 0A

Using the polar-coordinate representation of the theory, we first choose a value of the

RR flux q, and define the Type 0A state | 0A, q, µ〉 as a solution of noncritical M-theory,

as follows. The N fermions are distributed such that the Fermi sea is filled up to some

(negative) Fermi energy −µ in the sector with angular momentum q while keeping the

Fermi sea empty in all the sectors with angular momenta q′ 6= q:

aq(ν) | 0A, q, µ〉 = 0 for ν > −µ,

a†q(ν) | 0A, q, µ〉 = 0 for ν < −µ,

aq′(ν) | 0A, q, µ〉 = 0 for all ν with q′ 6= q. (4.1)

Notice that it is important to use this definition while taking the double scaling limit.

In particular, this state is not equivalent to sending µ → ∞ in all sectors with q′ 6= q

after the double scaling limit has been performed. To see this, we shall now reproduce the

known result for the exact vacuum energy of the Type 0A solution, from a direct M-theory

calculation.

The total vacuum energy of the 0A state | 0A, q, µ〉 will be equal to the sum of vacuum

energies over all M-theory sectors of fixed angular momentum q, filled up to a q-dependent

Fermi level as indicated in (4.1). The naive limit µ → ∞ in sectors of q′ 6= q is properly

interpreted as a prescription to keep the Fermi level at the cutoff Λ during the double scaling

limit. Recall that at fixed q, the density of states in Type 0A theory has an asymptotic

string-coupling expansion [1],[16]–[19]3

ρ0A(µ, q) ≈ − 1

4π
log(µ2 + q2) + O(1/µ2). (4.2)

3Throughout the paper, we use the “≈ ” symbol to denote exact asymptotic expansions, reserving “∼ ”

to represent a more loosely defined proportionality or scaling relation.
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Sending formally µ → ∞ would kill all the terms O(1/µ) and higher, but we would still be

left with the leading log. Keeping track of the cutoff dependence in ρ0A during the double

scaling, we find an extra correction ∼ 1
2π log Λ in the density of states (see, e.g., [14]). Thus,

setting µ = Λ in all sectors q′ 6= q and taking the double scaling limit Λ → ∞ will eliminate

also the log contribution from all sectors of q′ 6= q, and the resulting density of states of

this M-theory solution is manifestly equal to the density of states in Type 0A theory at

RR flux q. The integration of ρ to obtain the vacuum energy is then straightforward.

4.2 Type 0B

The Type 0B linear dilaton vacuum | 0B, µ〉 can be defined as a solution of noncritical

M-theory as follows. In the Cartesian representation of the theory, the energies ν1 and

ν2 of the two one-dimensional oscillators are separately conserved. Fix all the quantum

numbers of the second oscillator, i.e. pick an arbitrary fixed value ν̄2 of ν2 and s̄2 of s2,

and fill all states in the sector with ν2 = ν̄2 and s2 = s̄2 up to a negative Fermi energy −µ

while keeping the Fermi sea empty in all sectors with ν2 6= ν̄2 or s2 6= s̄2:

as1s2
(ν1, ν2) | 0B, µ〉 = 0 for ν1 > −µ with ν2 = ν̄2 and s2 = s̄2,

a†s1s2
(ν1, ν2) | 0B, µ〉 = 0 for ν1 < −µ with ν2 = ν̄2 and s2 = s̄2,

as1s2
(ν1, ν2) | 0B, µ〉 = 0 for all ν1 with ν2 6= ν̄2 or s2 6= s̄2. (4.3)

Several observations:

• Unlike in Type 0A, selecting a fixed value ν2 = ν̄2 to fill the Fermi sea does not

introduce any new physical free parameter, as any change in the value of ν̄2 can be

absorbed in a shift of µ. Without any loss of generality, we can take ν̄2 = 0.

• The parallels between the Type 0A and Type 0B constructions are even stronger

before the double-scaling limit. In that situation, ν2 is also a discrete conserved

quantum number.

• The bosonic c = 1 string can also be easily found as a solution of noncritical M-

theory, by repeating the steps of our Type 0B construction and filling only one side

of the one-dimensional effective potential at fixed ν2 = ν̄2 and s2 = s̄2.

• Similarly, our construction can be easily extended to simple orbifolds of Type 0A and

0B theories, such as the IIA and IIB models considered in [20 – 22].4

• The quantum states defining the Type 0A and 0B theories exhibit a semiclassical

Fermi surface which is effectively of higher codimension in phase space, compared

to the naive ground state of the system (to which we return in section 5). This is

4We also mention in passing that a duality diagram has been proposed some time ago for critical 0A

and 0B in ten dimensions in [23], conjecturally connecting them to nonsupersymmetric compactifications

of M-theory. Our results do not have any direct bearing on whether or not the proposal of [23] is correct.

Unlike Type 0 theories in the critical dimension, the two-dimensional models that we consider do not suffer

from instabilities, and the duality properies are thus under control, and amenable to our exact analysis.
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somewhat reminiscent of the higher-codimension Fermi surfaces classified and related

to K-theory in [24], the main difference being that the system of spinless fermions is

not in the stable regime of K-theory. Defining the proper semiclassical limit of such

states at large N might require the more systematic approach to large N developed

in [25].

5. Examples of solutions II: the M-theory vacuum in 2 + 1 dimensions

In critical M-theory, perhaps the most interesting vacua are those that exhibit the largest

spacetime symmetry in uncompactified eleven dimensions: The flat Minkowski space, de-

scribed at low energies by eleven-dimensional supergravity, and the heterotic M-theory

solution [26], with the additional E8 super Yang-Mills at the boundary of spacetime. It is

in those solutions where the non-stringy character of M-theory is most prominent, since

neither of these two vacua admits string-like excitations. Having reproduced the two-

dimensional string theory vacua from our noncritical M-theory in the previous subsection,

we can now analyze its “non-stringy phase,” and in particular, its 2+1 dimensional vacua.

The noncritical M-theory has one particularly natural solution, corresponding to filling

the states up to some common Fermi energy εF in the 2+1 dimensional system of fermions,

irrespective of their other quantum numbers. We will refer to this solution as the “M-theory

vacuum.” By construction, it represents the M-theory lift of the linear dilaton vacua of

Type 0A and 0B theories. Thus, we define the M-theory vacuum state |M, µ〉 — using, for

definiteness, the polar-coordinate representation of the theory — as follows:

aq(ν) |M, µ〉 = 0 for ν > −µ and all q,

a†q(ν) |M, µ〉 = 0 for ν < −µ and all q. (5.1)

Strictly speaking, one should distinguish between the definition of the M-theory state before

and after the double scaling limit. However, we shall keep the distinction implicit, in order

to keep the notation simple. We shall now analyze the scaling properties of this state, in

order to identify appropriately the double-scaling limit of |M, µ〉.

5.1 Scaling at leading order in 1/N

The large N limit corresponds to the WKB approximation of the M-theory vacuum defined

in (5.1). In this limit, the semiclassical density of states is given by

ρ(ν) = ~

∫
d2p d2y

(2π~)2
δ (ν − h(pi, yi)) , (5.2)

where the single-particle Hamiltonian is

h(pi, yi) =
1

2

∑

i=1, 2

(p2
i − ω2

0y
2
i + . . .), (5.3)

where we will only keep track of the universal part in the potential. Introducing y =√
y2
1 + y2

2 and p =
√

p2
1 + p2

2, and switching to the polar coordinates separately in the
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coordinate and momentum space, gives

ρ(ν) =

∫
dp dy

~
py δ

(
ν − 1

2
p2 +

1

2
ω2

0y
2

)
. (5.4)

We will use a rotationally invariant cutoff Λ, equivalent to placing an infinite wall at

λ ≤
√

2Λ/ω0. The integration gives

ρ(ν) =
1

~

∫ √
2Λ/ω0

√
−2εF /ω0

y dy ∼ 1

~ω2
0

(εF + Λ) ∼ εF

~ω2
0

, (5.5)

where in the final step we have dropped the nonuniversal cutoff-dependent part of the

density of states, keeping only its dependence on εF .

We can use this evaluation of the density of states to obtain an expression for the vac-

uum energy of the system. In the semiclassical regime, each fermion occupies a unit volume

1/(2π~)2 in phase space, and the total number N of fermions measures the semiclassical

area of the filled region,

N(εF ) =

∫
d2p d2y

(2π~)2
θ(εF − h(pi, yi)). (5.6)

Similarly, the semiclassical ground-state energy is given by

E0(εF ) =

∫
d2p d2y

(2π~)2
h(pi, yi) θ(εF − h(pi, yi)). (5.7)

Taking the derivative of each of those equations with respect to εF , we get

∂N(ν)

∂ν
=

∫
d2p d2y

(2π~)2
δ(ν − h(pi, yi)) (5.8)

and
∂E0(ν)

∂ν
=

∫
d2p d2y

(2π~)2
h(pi, yi) δ(ν − h(pi, yi)) = ν

∂N

∂ν
. (5.9)

Since the density of states is related to N via

ρ(ν) = ~
∂N

∂ν
, (5.10)

we finally obtain

F (εF ) ≡ E0(εF )

~
=

1

~

∫ εF

dν ν
∂N

∂ν
=

1

~2

∫ εF

dν νρ(ν)

∼ 1

~3ω2
0

(
ε3
F

3
+

ε2
F Λ

2

)
∼ ε3

F

3~3ω2
0

. (5.11)

In the final step, we have again kept only the universal dependence on εF .5

From this central result, we can draw several interesting lessons:

5From now on, we set β = 1 by rescaling the corresponding variables. Hence, ~ = 1/N .
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(1) The natural scaling variable suggested by this lowest-order result is

µ = −εF /~ ≡ −NεF . (5.12)

It is satisfying to find that the scaling variable in M-theory is indeed the same as in

Type 0A and 0B theory.

(2) The vacuum energy F ∼
∫

νρ(ν) dν scales as

F ∼ −µ3 + . . . . (5.13)

This behavior seems characteristic of M-theory. In the physical spacetime inter-

pretation of this result, the leading term in F should correspond to the tree-level

contribution, proportional to κ−2 where by κ we denote the spacetime coupling con-

stant, possibly related to the Newton constant. This implies that in terms of κ, the

natural expansion parameter 1/µ of noncritical M-theory is

1

µ
= κ2/3. (5.14)

This, of course, is the behavior observed in critical heterotic M-theory [26]. It is also

suggestive of a possible existence of membranes in the noncritical M-theory.

(3) Viewed in the context of large N theories, our 2 + 1 dimensional model exhibits an

interesting behavior: At the leading order at large N , our vacuum energy scales as

F ∼ N3, (5.15)

to be contrasted with the more conventional F ∼ N2 behavior familiar from the

traditional “planar” large N limit.

(4) Unlike in string theory in 1 + 1 dimensions, there is no logarithmic dependence of

the density of states on the Fermi energy. In noncritical strings, such a logarithmic

dependence signifies the volume dependence of various terms in the sum over surfaces;

its absence here suggests that the dependence on volume is reduced in M-theory. We

shall return to this point in section 6.3, where the volume/cutoff dependence of the

M-theory amplitudes will be discussed.

(5) As in noncritical string theory in 1+1 dimensions, the system exhibits a particle-hole

duality, accompanied by the exchange6

µ → −µ. (5.16)

Notice that the Fermi surface undergoes a topology changing transition as µ goes from

positive to negative values, but the geometry of the Fermi surface afer the transition

6This is an important symmetry, since it is related in the string theory context to the orbifold that

produces Type IIA and IIB out of Type 0A and 0B vacua [20 – 22]. It is satisfying to see that a similar

symmetry, and hence an orbifold procedure, extends to noncritical M-theory.
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is the same as its geometry before the transition. As a result of this nonperturbative

symmetry we expect that ρ (and consequently F ) should be an even function of µ.

Surprisingly, this expectation is apparently violated by the leading scaling behavior

of ρ and F that we just determined in the WKB approximation. This apparent

paradox will be resolved when we obtain the exact nonperturbative formula for ρ,

which will indeed be an even function. The odd piece in the perturbative expansion is

a consequence of the expansion in powers of 1/µ, which splits the exact formula into

a perturbative and a nonperturbative piece, neither of which is even under (5.16).

5.2 The double-scaling limit

Having identified the correct scaling variable, it is now clear how to define the double-

scaling limit of the M-theory vacuum. It is given by distributing N fermions such that

they fill all the lowest energy levels up to a Fermi energy εF , and then taking the limit

N → ∞, εF → 0, µ ≡ −NεF fixed. (5.17)

Thus, the rules for taking the double scaling limit of fermions in the M-theory vacuum turn

out to be exactly the same as in noncritical string theory in 1+1 dimensions. The double-

scaling limits leading to Type 0A, 0B or M-theory solutions differ only in the selection of

how the N fermions occupy available energy levels, but not in how the N → ∞ limit is

taken.

5.3 The worldsheet cosmological constant and the string susceptibility

If this were a string theory, we would be interested in expressing the amplitudes in terms of

the worldsheet cosmological constant ∆. In the matrix model, this cosmological constant

can be defined via
∂∆

∂µ
= πρ(µ). (5.18)

In string theory, a particularly important critical exponent is γstr, known as the “string

susceptibility” exponent [3]–[7]. It is usually defined via the leading scaling behavior of the

vacuum energy of the matrix model in the double scaling limit,

F ∼ ∆2−γstr + . . . (5.19)

In matrix models of noncritical strings, we are limited to backgrounds with spacetime

dimension d ≤ 2. These backgrounds have γstr ≤ 0, with the bound γstr = 0 saturated for

two-dimensional strings, or central charge c (or ĉ) equal to one. This is the famous “c = 1

barrier” of the matrix model formulation of noncritical string theory.7

In noncritical M-theory, we can define ∆ as in (5.18). In the leading WKB approxi-

mation, we get

∆ ≈ − π

2ω2
0

µ2 + . . . (5.20)

7The c = 1 barrier can perhaps be breached by considering supersymmetric noncritical strings with an

exotic type of supersymmetry, [27].
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Furthermore, we can introduce the “M-theory susceptibility” exponent γM , defined exactly

as in string theory via eq. (5.19). As we have seen, in the M-theory vacuum F ∼ µ3 + . . .,

implying

γM = 1/2. (5.21)

Thus, the noncritical M-theory vacuum is in the regime of values of the susceptibility

exponent that is unattainable by matrix models of noncritical strings. This is yet another

check that our M-theory is naturally interpreted as living beyond the c = 1 barrier, at the

cost of not being a string theory anymore.

6. Exact vacuum energy in noncritical M-theory

Having defined our M-theory vacuum solution |M, µ〉, we can now use the exact free-fermion

description of the system to extract a wealth of physical information about |M, µ〉 and its

excitations. As an example, we will evaluate the exact vacuum energy of this solution.

As in the matrix models of noncritical string theory, the vacuum energy F (µ) is deter-

mined in terms of the exact density of states ρM (µ) via

∂F

∂µ
= µρM (µ). (6.1)

The µ derivative of ρM can be expressed in the following, cutoff-independent integral

representation,

∂ρM

∂µ
=

∑

q∈Z

∂ρ0A

∂µ
=

1

2πω0µ
Im

∫ ∞

0
dσ e−iσ ω0σ/µ

sinh{ω0σ/µ}
∑

q∈Z

e−|q|ω0σ/µ

=
1

2πω0µ
Im

∫ ∞

0
dσ e−iσ ω0σ/(2µ)

sinh2{ω0σ/(2µ)} . (6.2)

Recall that the scale ω0 is related in Type 0A and 0B string theory to the string scale

via ω0 = 1/
√

2α′. We obtained the integral representation (6.2) by summing the Type 0A

contributions [1, 18] from the sectors of all integer values of RR flux q.

Alternatively, this integral representation could be obtained in a manner closer to Type

0B, using the Cartesian coordinate representation of M-theory and the definition of the

density of states via the resolvent of the one-particle Hamiltonian h(pi, λi),

ρM (µ) = lim
ǫ→0+

1

π
ImTr

(
1

h(pi, λi) + µ − iǫ

)
. (6.3)

The resolvent can be easily evaluated, leading to

〈λ̃i|
1

h + µ − iǫ
|λj〉 = i

∫ ∞

0
dτe−iµτ

(
iω0

2π sinh(ω0τ)

)
×

× exp

{
iω0[(λ

2 + λ̃2) cosh(ω0τ) − 2λλ̃]

2 sinh(ω0τ)

}
. (6.4)
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Upon evaluating the Gaussian integrals over λi and using (6.3), we obtain

ρM (µ) =
1

4π
Re

∫ ∞

0
dτ e−iµτ 1

sinh2(ω0τ/2)
. (6.5)

Strictly speaking, this formula depends on a cutoff (i.e., is formally divergent near τ = 0

and needs to be regulated), but in a way which is µ independent. Taking the derivative

of (6.5) and rescaling the integration variable to σ = µτ , we reproduce (6.2).

6.1 The weak coupling expansion

We see that the M-theory vacuum has a dimensionless parameter, µ/ω0. In string theory,

this parameter would play the role of the inverse string coupling constant. Thus, in analogy

with string theory, we first study the perturbation expansion in the powers of 1/µ.

6.1.1 Leading order

The leading term in the expansion of the density of states is µ-independent, and equal to

∂ρM

∂µ
≈ − 1

πω2
0

∫ ∞

0

dσ

σ
sin σ e−ǫσ + O(1/µ2)

= − 1

2ω2
0

+ O(1/µ2). (6.6)

This is to be contrasted with the 1/µ expansion in two-dimensional string theory, where

the leading term in ∂ρ/∂µ goes as 1/µ, leading to the characteristic logarithmic behavior

of ρ(µ).

6.1.2 Higher loops

In the 1/µ expansion of the derivative of the density of states (6.2), only even powers of

1/µ appear, and the term of order 2m (with m = 1, 2, . . .) is proportional to
∫ ∞

0
dσ σ2m−1 sin σ e−ǫσ. (6.7)

All such integrals vanish identically, implying that our perturbation series for ∂ρM/∂µ

terminates after the lowest, constant term, and we obtain

∂ρM

∂µ
≈ − 1

2ω2
0

+ possible nonperturbative terms. (6.8)

This in turn leads to the asymptotic expansion of the density of states

ρM (µ) ≈ − 1

2ω2
0

µ +
C

ω0
, (6.9)

where C is a nonuniversal dimensionless integration constant, to be discussed in section 6.3.

Finally, this yields the perturbative formula for the vacuum energy, exact to all orders in

powers of 1/µ,

F =

∫ −µ

νρM (ν)dν ≈ 1

2ω2
0

∫ −µ

ν2dν = − 1

6ω2
0

µ3 +
C

2ω0
µ2 + ω0C0. (6.10)
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The integration constant C0 represents a one-loop term. Unlike in noncritical string theory,

where the one-loop term is proportional to log µ, C0 in M-theory is µ independent, and

can therefore be eliminated by a shift in the overall zero of the vacuum energy F . We will

set C0 = 0 from now on.

We found a dramatic simplification in the 1/µ expansion of the vacuum energy of the

M-theory vacuum, compared to its string theory counterparts (where all orders in 1/µ are

generically nonzero). The fact that the perturbative expansion terminates at one loop is a

first hint that the theory may be topological, or at least exhibit a localization of the path

integral similar to that of a topological theory. This will be further confirmed when we

study the structure of nonperturbative corrections to the vacuum energy below.

6.1.3 Summation of higher-genus Type 0A contributions

From the point of view of string theory, this result can be reproduced by summing the

asymptotic expansions of the Type 0A amplitudes order by order in 1/µ. The vacuum

energy in Type 0A theory with RR flux q can also be expanded in the powers of the string

coupling 1/µ, and the coefficients of this series are generically nonzero to all orders. It is

instructive to see how they sum up to zero, order by order in 1/µ, when the summation

over q is performed. In the derivative of the density of states, these terms of order 1/µ3

and higher are (with the implicit ζ-function regularization)

∂ρ

∂ν
=

2

πω2
0

∞∑

k=1

k2ν/ω0

(k2 + ν2/ω2
0)

2

≈ 2ω0

πν3

∞∑

k=1

∞∑

m=0

(m + 1)(−1)mk2m
(ω0

ν

)2m

≈ − 2

πω2
0

∞∑

m=1

(−1)mmζ(−2m)
(ω0

ν

)2m+1
. (6.11)

Hence, the nonzero contributions from sectors of fixed q sum up, at order (1/µ)2m+1, to

give ζ(−2m). Since ζ(−2m) = 0 for m = 1, . . ., all terms m = 1, . . . in this asymptotic

expansion are identically zero.

6.1.4 Summation of the leading logs

It is similarly instructive to see how the leading µ3 behavior of the vacuum energy in M-

theory comes about from the summation of the leading µ2 log µ terms in Type 0A at fixed

q. (For simplicity, we set ω0 = 1 in this paragraph.)

Recall that at fixed q ∈ Z, the density of states in Type 0A theory has an asymptotic

expansion [1, 18, 19]

ρ0A(ν, q) ≈ − 1

2π
Re log(|q| − iν) + O(1/(|q| − iν)). (6.12)

In M-theory, we fill all sectors with different values of q up to the common Fermi level.

The leading term in the expansion of the density of states is then

ρM (µ) =
∑

q∈Z

ρ0A(µ, q) ≈ − 1

4π

∑

q∈Z

log(µ2 + q2) + . . . (6.13)
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We are interested in summing these leading logs. We have

− 1

4π

∑

q∈Z

log(µ2 + q2) = − 1

4π
log(µ2) − 1

2π

∞∑

q=1

log
(
q2(1 + µ2/q2)

)

= − 1

4π
log(µ2) − 1

2π

∞∑

q=1

log(q2) − 1

2π
log

∞∏

q=1

(1 + µ2/q2)

= − 1

4π
log(µ2) − 1

2π
log

[
sinh(πµ)

πµ

]
+ . . .

= − 1

2π
log (sinh(πµ)) + . . . = −µ

2
− 1

2π
log

(
1 − e−2πµ

)
+ . . .

= −µ

2
+ . . . (6.14)

where the “. . .” in (6.14) refer to divergent but µ-independent terms, and where in the final

formula we also dropped all the terms nonperturbative in 1/µ.

Thus we see that the leading log µ piece from the q = 0 sector is exactly offset by

a contribution from log sinh(πµ)/µ which originates in the sum over sectors with q 6= 0.

Instead, the leading log is replaced by a term linear in µ, which also emerges from the sum

over all q. Consequently, we end up with the M-theory scaling,

ρM (µ) ∼ µ ≡ κ−2/3, (6.15)

predicted by the WKB argument of the previous subsection.

6.2 The strong coupling expansion

We now turn to the analysis of the nonperturbative corrections.

The integral representation for the derivative of the density of states can be expanded

in the powers of µ:

∂ρM

∂µ
≈ − 1

πω2
0

∞∑

n=0

(−1)n
(2µ/ω0)

2n+1

(2n + 1)!

∫ ∞

0
dτ

τ2n+2

sinh τ

≈ − 1

ω2
0

∞∑

n=0

(2πµ/ω0)
2n+1B2n+2

(2n + 1)!
. (6.16)

Alternatively, this same result can be obtained by summing Type 0A contributions over

all values of q. Indeed,

∂ρM

∂ν
=

2

πω2
0

∞∑

k=1

ν/ω2
0

k2(1 + ν2/(k2ω2
0))

2

≈ 2

πω2
0

∞∑

k=1

∞∑

m=0

(m + 1)(−1)m
(ν/ω0)

2m+1

k2m+2

≈ − 2

πω2
0

∞∑

m=1

m(−1)mζ(2m)

(
ν

ω0

)2m−1

. (6.17)
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The zeta function at positive even integers can be expressed in terms of the Bernoulli

numbers,

ζ(2n) =
22n−1π2n|B2n|

(2n)!
. (6.18)

Using the fact that B2n = (−1)n+1|B2n| for n = 1, . . ., we get

∂ρM

∂ν
≈ − 1

ω2
0

∞∑

m=1

2m

(
2πν

ω0

)2m−1 B2m

(2m)!
, (6.19)

reproducing (6.16).

6.3 Dependence on the cutoff and volume

So far, we have only considered the universal part of the density of states and the vacuum

energy. Now we take a closer look at the possible cutoff dependence. Recall that in non-

critical string theory, the vacuum energy is dependent on the cutoff Λ via the µ2 log(Λ/µ)

and log(Λ/µ) terms in the string coupling expansion. These two terms have a clear phys-

ical interpretation: log(Λ/µ) is the effective volume of the Liouville dimension, and the

tree-level and one-loop terms in the vacuum energy are proportional to this volume.

The density of states in the M-theory vacuum is similarly cutoff-dependent. The proper

way of defining the double-scaling limit of ρ involves first introducing a small-τ cutoff in

the integral representation

ρM (µ) =
1

4π
Re

∫ ∞

1/Λ
dτ e−iµτ 1

sinh2(ω0τ/2)
, (6.20)

and then taking Λ (which is proportional to
√

N) to infinity. In the previous subsections,

we took advantage of the fact that the entire cutoff dependence of ρ(µ) is associated with

the constant, µ-independent term in ρ(µ), and we simply evaluated the finite, universal

quantity ∂ρ/∂µ. The leading, cutoff dependent term in ρ is given by

1

4πω0

∫ ∞

1/Λ
dτ

1

sinh2(ω0τ/2)
=

1

2πω0

(
coth

( ω0

2Λ

)
− 1

)
≈ Λ

πω2
0

+ . . . , (6.21)

where in the end we dropped all subleading terms in 1/Λ.8 This constant term modifies

the leading behavior of the exact density of states in the 1/µ expansion to

ρM (µ) ≈ 1

2ω2
0

(−µ + Λ) + nonperturbative terms. (6.22)

Upon further integration, the cutoff-dependent term in ρ will give a Λ-dependent correction

to our previous expression for the vacuum energy,

F ≈ − µ3

6ω2
0

+
Λµ2

4ω2
0

. (6.23)

8Throughout this paper, Λ represents a large, nonuniversal cutoff. Consequently, we will only keep track

of the leading dependence on Λ, and systematically drop all the subleading nonuniversal terms in all the

cutoff-dependent quantities.
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In retrospect, we should have expected this Λ-dependent contribution to the leading behav-

ior of the exact density of states, given the results of our WKB calculation in section 5.1,

where the same µ-independent, Λ-dependent additive correction to ρ ∼ µ was also found.

In analogy with noncritical string theory, it is natural to interpret Λ as a measure of

the total volume of the system. We see that in the noncritical M-theory vacuum — just as

in string theory — the volume dependence creeps in via the µ2 term in the vacuum energy.

Unlike in string theory, however, this cutoff dependence does not affect the leading, tree-

level term, which in M-theory scales as µ3. The volume-dependent terms in the vacuum

energy are now only subleading, of order κ2/3 compared to the leading tree-level contri-

bution. It is intriguing to recall that in critical heterotic M-theory [26], it is at this order

where the twisted sector (described by Yang-Mills degrees of freedom at the boundary)

starts contributing.

6.4 The exact formula

Thus, the strong coupling expansion of ρM in powers of µ results in a nontrivial series (6.19).

This series can be summed as follows. Recall first that the Bernoulli numbers are usually

defined via their generating function,

x

ex − 1
=

∞∑

n=0

Bnxn

n!
. (6.24)

Together with the elementary facts that B2k+1 = 0 for all k = 1, 2 . . . while B0 = 1 and

B1 = −1/2, this allows us to rewrite (6.19) as

∂ρM

∂ν
= − 1

ω2
0

∂

∂ν

(
ν

e2πν/ω0 − 1
− B1

2π
2πν

)
= − 1

ω2
0

∂

∂ν

(
ν

2
+

ν

e2πν/ω0 − 1

)
. (6.25)

To further verify this, we now evaluate (6.2) directly, using a contour integral method while

keeping track of the expected asymptotics in µ.

6.4.1 Evaluation by a contour integral

We are interested in

I ≡ 1

4π

∫ ∞

0
dx

e−iµx

sinh2(x/2)
≡

∫ ∞

0
dx I(x). (6.26)

This integral can be evaluated as follows. The integrand I(z), as a function in the complex

plane, has an infinite series of double poles at z = 2kπi for all k ∈ Z. Furthermore, I(z) is

a quasi-periodic function along the imaginary axis,

I(x + 2πi) = e2πµI(x). (6.27)

Taking advantage of this quasi-periodicity of I(z), we can close the contour as in figure 1,

and obtain in the limit L → ∞

2(1 − e2πµ)I +

∫

C0

I(z) dz +

∫

C2πi

I(z) dz =

∮

C
I(z) = 2πiRes2πiI(z) = 2µe2πµ. (6.28)
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−L L

z

2πi

0
−2πi

4πi

Figure 1: The integration contour C used to evaluate the exact density of states. The singularities

are at 2kπi, the contour encloses one of them — at 2πi — and the integral is evaluated in the limit

of L → ∞.

where C0 and C2πi are the two semicircles of radius ǫ ∼ 1/Λ around the poles at 0 and

2πi. The contributions from C0 and C2πi are divergent, and equal to
∫

C0

I(z) = − 2

πǫ
− πiRes0I(z) + O(ǫ),

∫

C2πi

I(z) =
2

πǫ
e2πµ + πiRes2πiI(z) + O(ǫ). (6.29)

This yields

2(1 − e2πµ)I = πiRes0I(z) + πiRes2πiI(z) + (1 − e2πµ)
2

πǫ
, (6.30)

and finally (after identifying ǫ ∼ 1/Λ)

I = − µ

2 tanh(πµ)
+

Λ

2
. (6.31)

Restoring ω0 in (6.31) we get

ρM (µ) = − µ/ω2
0

2 tanh(πµ/ω0)
+

Λ

2ω2
0

. (6.32)

This formula is exact, and matches the results of our summation (6.25). One can easily

check that it has the correct asymptotics to match both the weak coupling and the strong

coupling expansion. Notice that the exact density of states (6.32) is now even under

µ → −µ, despite the fact that the leading behavior in the asymptotic expansion in 1/µ

is odd, ∼ µ3. This is the promised resolution of the puzzle mentioned in section 5.1. We

see that the leading perturbative term being odd in µ is an artifact of splitting the exact

formula into the perturbative and the nonperturbative part, neither of which are separately

even under µ → −µ.

The exact vacuum energy is then

F = − 1

2ω2
0

∫ −µ

dν

{
ν2

tanh(πν)
− Λν

}
= − 1

6ω2
0

µ3 +
Λ

4ω2
0

µ2

− 1

2πω0
µ2 log(1 − e−2πµ/ω0) +

1

2π2
µ Li2(e

−2πµ/ω0) +
ω0

4π3
Li3(e

−2πµ/ω0).(6.33)
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In the last expression, the first two terms correspond to the perturbative contribution in

the 1/µ expansion, while the terms involving the log and the polylogarithms9 all represent

nonperturbative corrections.

In section 5.3 we determined that the M-theory analog of the string susceptibility in

the M-theory vacuum is equal to 1/2. This critical exponent measures the leading scaling

of the vacuum energy with ∆, a scaling variable that in string theory can be identified

with the worldsheet cosmological constant. Indeed, ∆ is the continuum limit of the bare

cosmological constant, which counts the number of vertices in the triangulation of the

random surface in the matrix model. ∆ in the M-theory vacuum can also be exactly

evaluated, leading to

∆(µ) = −π

2

[
1

ω2
0

µ2 +
2

ω0
µ log(1 − e−2πµ/ω0) − Li2(e

−2πµ/ω0)

]
+

πΛ

2ω2
0

µ. (6.34)

We have again dropped a possible nonuniversal Λ-dependent constant term independent of

µ.

6.5 The exact formula in the weak coupling expansion

The compact formula (6.33) for the exact vacuum energy can be rewritten in a more

illuminating way by re-expanding in 1/µ, into an infinite sum of instanton-like terms,

F = ω0

{
− 1

6ω3
0

µ3 +
Λ

4ω3
0

µ2 +

∞∑

k=1

(
1

2πω2
0k

µ2 +
1

2π2ω0k2
µ +

1

4π3k3

)
e−2πkµ/ω0

}
.

(6.35)

This formula exhibits several noteworthy features:

(1) We again find that the weak-coupling expansion is in fractional powers of the natural

loop counting parameter κ2, the basic unit of the expansion being κ2/3.

(2) The strength of all nonperturbative effects (i.e., the “instanton action”) is controlled

by 1/µ ≡ κ2/3, leading to their scaling as ∼ e−Aκ−2/3

for some constant A.

(3) In the vicinity of each instanton, the perturbative expansion involves terms of order

κ2/3, κ4/3, and κ0 (which corresponds to one loop). As in the case of the perturba-

tive part of the vacuum energy, all higher orders terms vanish. This is again strongly

indicative of localization phenomena and an underlying topological symmetry of the

theory. It is intriguing, however, that this topological nature of the theory is compat-

ible with the anticipated presence of a propagating degree of freedom: The M-theory

analog of the massless stringy tachyon.10 In this respect, the vacuum energy of the

M-theory vacuum exhibits features reminiscent of a holographic field theory [28, 29].

9Our notation for the polylogarithms is such that Liν(z) =
P

∞

k=1
zk/kν for |z| < 1.

10A simple heuristic argument for the presence of a propagating degree of freedom can be given. In

the fermion language, the M-theory vacuum has a smooth semiclassical Fermi surface, of codimension one

in phase space. This Fermi surface can fluctuate and its small fluctuations correspond to gapless bosonic

excitations, implying the presence of a propagating degree of freedom.
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(4) Unlike for the one-loop-exact perturbative contribution, the instanton measure contri-

butions start only at the subleading order κ2/3 compared to the tree-level term. The

analogy with critical heterotic M-theory [26] suggests that the instantons could be

related to twisted sectors of the theory, with their characteristic subleading behavior

∼ κ2/3.

(5) Instead of calculating the vacuum energy F , one may be interested in the free energy

Γ(µ), defined via the Legendre tranform of F as a function of ∆:

Γ(µ) = µ∆ − F (∆). (6.36)

The exact formula for Γ(µ) can be easily obtained from (6.34) and (6.35).

7. Analogy with the Debye model of phonons in solids

The universal part of our exact formula (6.33) for the vacuum energy in the M-theory

vacuum can be rewritten as

F = − 1

2ω2
0

∫ −µ

ν2

(
1

exp (2πν/ω0) − 1
+

1

2

)
dν. (7.1)

This expression is strongly suggestive of underlying bosonic degrees of freedom. At first, it

appears that (7.1) represents the energy of a thermal bosonic system, with the density of

states yielding Planck’s black body radiation formula at an effective temperature of order

one in string units,

Teff =
ω0

2π
. (7.2)

However, (7.1) also exhibits an effective cuttoff on the available frequencies, which is absent

in the Planck black body formula. Upon closer inspection, (7.1) turns out to be more closely

analogous to another famous bosonic system: the Debye model of phonon excitations in a

solid at temperature (7.2).

7.1 The Debye model

The Debye model of the thermodynamic properties of solids [30, 31] was originally designed

to explain the behavior of the specific heat of solids at low temperatures. It was proposed

as an improvement of the somewhat less successful Einstein model, in which the atoms in

the solid were simply treated as independent harmonic oscillators. In Debye’s model, the

crystal consists of a fixed number ∼ N of atoms, assumed to behave as a system of coupled

harmonic oscillators, with a fixed number N of normal modes of the phonon spectrum. The

total energy of the system at temperature T is given by an integral over all frequencies,

E =

∫ ωD

0
ω ρD(ω)

(
1

eω/T − 1
+

1

2

)
dω, (7.3)

with ρD(ω) the density of states of the system. The finiteness of the total number of atoms

imposes a limit ωD on the maximum attainable frequency of the normal modes. This
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limiting frequency, referred to as the Debye frequency, is set by the total number N of

normal modes in the crystal, ∫ ωD

0
ρD(ω) dω = N . (7.4)

As a model of realistic crystals, the Debye model is based on several rather drastic sim-

plifying assumptions about the system. Firstly, the phonon dispersion relation is assumed

isotropic and strictly relativistic. Furthermore, the assumed absence of anharmonic terms

in the phonon system is equivalent to ignoring the possibility of crystal melting at high

enough temperature. Lastly, the density of states ρD(ω) is assumed to be a smooth func-

tion ρD(ω) ∼ ωd−1, with d the number of spatial dimensions, up to the sharp cutoff at

ω = ωD. For example, in two spatial dimensions, one would have

ρD(ω) =
V

2π
ω, (7.5)

where V is the volume of the system, and the speed of sound has been set equal to one.

All of these assumptions would have to be modified in a realistic crystal. In contrast,

as we are now going to see, the exact calculations in M-theory are compatible with all of

the above assumptions, and in this sense, the Debye analogy for noncritical M-theory is

exact.

7.2 The analogy

It is easy to see that our formula (7.1) for the exact vacuum energy of M-theory is precisely

of the Debye form (7.3), with the following dictionary between the two descriptions of the

system:

(1) The chemical potential in the bosonic system is equal to zero. This means that the

bosonic quanta can be created and annihilated, and that the total number of bosons

is not fixed.

(2) The perturbative piece in ρ(µ) corresponds to the zero-point energy of the Debye

crystal. The nonperturbative terms in ρ(µ) sum up to the Planck thermal factor.

(3) The double-scaled Fermi energy µ plays the role of the Debye frequency ωD.

(4) The effective temperature of the crystal is given by (7.2). It is set in string units and

cannot be varied, at least in this vacuum of noncritical M-theory.

(5) The Debye density of states is proportional to ω. Thus, the system is effectively 2 + 1

dimensional, as suggested by its M-theory interpretation as the M-theory vacuum.

(6) The formula is consistent with the exact relativistic dispersion relation of the phonons,

and with the relativistic density of states ρD(ω) = V ω/2π.

(7) The total volume V of the Debye crystal is proportional to 1/ω2
0 . However, the surprise

lies in the overall sign of this volume, which comes out negative!
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This last point can be better understood as follows. Note first that the effective Debye

density of states ρD(ω) that appears in (7.3) can be identified with the leading perturbative

term in our density of states ρ(µ):

ρ(ω) ∼ ρD(ω) + nonperturbative terms. (7.6)

Recalling now the relation between the scaling variable ∆ and the density of states,

∆ = π

∫ −µ

ρ(ν) dν, (7.7)

the leading perturbative term in ∆ is found to be related, via (7.4), to the total number of

atoms in the Debye solid:

∆ ∼ N + nonperturbative terms. (7.8)

In string theory, the scaling variable ∆ was interpreted as the worldsheet cosmological

constant, since its discretized matrix-model version counts the number of plaquettes in

the random triangulation of the worldsheet. Surprisingly, we see that even in noncritical

M-theory, ∆ can be interpreted as an object that counts the number of constituents, now

of the Debye crystal.

7.3 Reintroducing the cutoff: the melting crystal interpretation

The Debye analogy is almost precise, except that — as we have just seen — it seems to

lead to the rather embarrassing prediction of a negative volume for the Debye crystal. This

problem can be remedied by reintroducing the dependence on the cutoff Λ in the system.

We have seen in our exact evaluation of ∆ in section 6.4 that when we keep track of

the cutoff dependence, ∆ gets a large positive contribution proportional to Λµ,

∆(µ) = − π

2ω2
0

µ2 +
πΛ

2ω2
0

µ. (7.9)

As we have just argued, in the Debye model analogy, ∆ counts the effective number of

atoms in the Debye crystal. Hence, (7.9) shows that in the thermodynamic limit of large

Λ, we effectively have a a large Debye crystal whose number of atoms is measured by the

cutoff Λ. The negative sign in front of the leading µ2 term in ∆ is now easily understood:

A number of atoms, measured by µ, has been removed from the large crystal.11 µ now

represents the lowest frequency in the system, confirming that a small number of atoms

has been removed from the Debye solid. Effectively, µ measures the size of a small hole in

a big sample of the Debye crystal. This picture is superficially reminiscent of the recently

found correspondence between topological strings and the statistical mechanics of a classical

melting crystal [32].

11In fact, this is closely analogous to the behavior of noncritical string theory, where the available volume

of the Liouville dimension is measured by log(Λ/µ). One can think of Λ as setting the size of the Liouville

dimension in the weakly coupled asymptotic region. µ is then associated with the Liouville wall. At weak

string coupling µ ≫ 1, Liouville wall effectively subtracts the available volume from the total volume set

by Λ, similarly to the behavior we have observed in noncritical M-theory.
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Having interpreted the cutoff Λ as the quantity that sets the total number of atoms in

the Debye system, we can in fact sharpen the relation between ∆, N and N even further.

The cutoff-dependent terms in ∆ will include a µ-independent constant, which we have

been ignoring so far as nonuniversal. Restoring this term, we get

∆ ∼ π

2ω2
0

(−µ2 + Λ2) + . . . . (7.10)

The Λ2 term can be thought of as coming from the lower integration bound in the definition

of ∆ in (7.7). Recalling now that in the large N limit, the nonuniversal cutoff Λ scales as√
N , we obtain from (7.10) that

N ∼ N. (7.11)

Thus, we find that the number of atoms in the Debye solid is effectively related to the

number of fermions in the Fermi liquid.

7.4 Solution with two Fermi surfaces as a universal melting crystal

The reinterpretation of µ as a parameter measuring the number of atoms removed from a

Debye crystal of size set by the cutoff Λ is pleasing, but the downside of this interpretation

is in its reliance on the nonuniversal cutoff Λ. In particular, it would be desirable to have

more detailed information about the bulk of the system. For example, we would like to

know whether the large crystal is at the same temperature as the atoms removed from it.

The dependence of the Debye interpretation on the cutoff can be eliminated by con-

sidering a small modification of our construction of the M-theory vacuum state. Instead

of using the nonuniversal cutoff Λ to provide the environment, introduce two Fermi levels,

µ±, with µ+ < µ−, and fill the Fermi sea only between µ+ and µ−. Hence, µ+ and µ−
are the top and the bottom of the Fermi sea, respectively. This state is again interpreted

in terms of the double-scaling limit: Define µ± = −Nε±F , and take the limit N → ∞ and

ε±F → 0 while keeping µ± fixed.

In this modified state |M, µ+, µ−〉, the universal part of the vacuum energy is

F = − 2

ω2
0

∫ −µ+

−µ−

dν ν2

(
1

exp (2πν/ω0) − 1
+

1

2

)
, (7.12)

while ∆ is

∆(µ+, µ−) =
π

2ω2
0

(µ2
− − µ2

+) + . . . , (7.13)

where the “. . . ” stand for all the nonperturbative and nonuniversal terms. (7.12) is indeed

the Debye result for the free energy of a crystal of size set by µ−, with a portion of the

crystal measured by µ+ removed. If µ− ≫ µ+, we have a small hole in a big Debye crystal.

The dependence of all quantities on µ± is universal. The system is at finite temperature

of order one in string units, Teff = ω0/2π.

It is natural to suspect that the bosonic features of the vacuum energy in the noncritical

M-theory vacuum are related to the anticipated bosonization in terms of a collective degree

of freedom, which should represent the M-theory lift of the massless tachyon of noncritical

string theory. This connection, and the entire Debye analogy, deserves further study.
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8. Observables and symmetries

Having discussed properties of a specific M-theory solution in the previous sections, we

now address several more conceptual aspects of noncritical M-theory, which should find

applications to a broader class of solutions. For the rest of the paper, we will set ω0 = 1.

8.1 Observables

We have seen that the exact vacuum energy has a very interesting structure, suggesting an

underlying symmetry reminiscent of topological localization.

Despite appearances, and the suggestive simplicity of the exact vacuum energy, the

M-theory vacuum still contains propagating degrees of freedom. The existence of a Fermi

surface suggests that at least one field-theory degree of freedom is present. In string theory,

the fluctuations of the Fermi surface correspond to the massless modes of the theory, i.e.,

the tachyon (and, in Type 0B, also the RR scalar). Motivated by how the tachyon emerges

from the matrix models of two-dimensional string theories (see, e.g., [3]), we can define a

set of natural observables given by the density of eigenvalues ρ(t, λi) = Ψ†Ψ(t, λi) [33], or,

more conveniently, by the inverse Laplace-like transform of ρ with respect to the eigenvalue

coordinates,

O0(t, wi) =

∫
dλ1dλ2 e−w1λ1−w2λ2Ψ†Ψ(t, λi), (8.1)

or the Fourier transform with respect to t,

O0(ω,wi) =

∫
dt eiωtO0(t, wi). (8.2)

Lessons learned in two-dimensional string theory lead us to anticipate that the field O0

should be the M-theory analog of the massless tachyon field. Indeed, it is this collective

bosonic field that represents the fluctuations of the Fermi surface in circumstances where

the latter is nicely defined. An even better representation of the observables is

O(t, ℓ, φ) =

∫ ∞

√
2µ

dλe−ℓλΨ†Ψ(t, λ, φ)

=

∫ ∞

0
dλe−

√
2µℓ cosh τΨ†Ψ(t, τ, φ), (8.3)

where we have introduced τ via λ =
√

2µ cosh τ in order to shift the lower integration

bound to zero. These formulas are very reminiscent of the bosonization of nonrelativistic

fermions in higher dimensions [34, 35], where the bosonization is in terms of a collection of

1 + 1 dimensional bosons parametrized by the angle φ on the Fermi surface, which plays

the role of an internal index.

The natural correlation functions to calculate are the n-point functions

〈M, µ|
n∏

k=1

O(tk, ℓk, φk) |M, µ〉. (8.4)

They can again be evaluated exactly (in principle), using the techniques developed in the

matrix models of noncritical strings [15, 37, 38]. We leave a detailed analysis for the future.
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8.2 Symmetries

Our noncritical M-theory is an exactly solvable system, with an infinite dimensional sym-

metry algebra generalizing the famous w∞ symmetries and ground ring structure of two-

dimensional strings [39].

Recalling the classical equations of motion

ṗi = λi, λ̇i = pi, (8.5)

the conserved charges can be built out of four building blocks (interpreting t again as a

real time coordinate),

a1 =
1√
2
(p1 + λ1)e

−t, b1 =
1√
2
(p1 − λ1)e

t,

a2 =
1√
2
(p2 + λ2)e

−t, b2 =
1√
2
(p2 − λ2)e

t. (8.6)

The full symmetry algebra W is generated by products of non-negative integral powers of

ai, bi. Hence, a basis in W is given by

Wm1m2n1n2
= am1

1 am2

2 bn1

1 bn2

2 , mi, ni = 0, 1, . . . (8.7)

The commutation relations are defined via the elementary Poisson brackets,

[ai, bj ] = −δij , [ai, aj ] = [bi, bj] = 0. (8.8)

Note that the Hamiltonian and the angular momentum are both bilinear combinations of

ai and bi:

H = W1010 + W0101, J = W0110 − W1001. (8.9)

The elements in W at most bilinear in ai and bi form a closed finite-dimensional

subalgebra W0 of the full infinite symmetry algebra W of the system.

In a typical solution, some symmetries from W or W0 respect the Fermi surface, while

others are broken by the solution. For example, our M-theory vacuum is preserved by just

four (out of the total number of ten) quadratic charges: W1010,W1001,W0110 and W0101.

They form the algebra of SO(2, 1)×U(1), with the Abelian generator corresponding to the

Hamiltonian that defines the Fermi surface.

8.2.1 Massless modes vs. symmetries

In a given solution of noncritical M-theory, the massless bosonic modes are closely related

to the existence of the Fermi surface. It is tempting to speculate that these massless

modes should be interpreted as the Goldstone modes of the symmetries in W that have

been broken by the Fermi surface. Indeed, the bosonic fluctuations of the Fermi surface

have been interpreted as Goldstone modes of broken symmetries in the condensed matter

context (see, e.g., [34]).

If this view is correct, the states that exhibit higher degrees of symmetry should have

fewer massless modes. The M-theory vacuum indeed exhibits a larger symmetry than the
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Type 0A or 0B solutions. This larger degree of symmetry could explain the apparent

topological features of the exact vacuum energy, compared to the less symmetric Type

0A or 0B string vacua. In this sense, the M-theory vacuum is closer than the string

vacua to exposing the full symmetry of the theory.12 This hypothetical Goldstone boson

interpretation of the massless tachyon seems further supported by our interpretation of the

vacuum energy in the M-theory vacuum in terms of the Debye phonons.

9. Semiclassical spacetime physics as hydrodynamics of the Fermi liquid

As we have argued, only the solutions of noncritical M-theory that can be bosonized in

terms of hydrodynamic degrees of freedom are expected to admit a conventional semi-

classical spacetime description. In this section, we develop a formalism — closely parallel

to a similar framework in noncritical string theory [40, 41] — which allows us to search

systematically for such hydrodynamic solutions of noncritical M-theory. Intuitively, the hy-

drodynamic states are those states that can be described by a semiclassical Fermi surface.

In the semiclassical limit, the Fermi surface satisfies its own hydrodynamical equations of

motion. Solving those equations directly is an efficient way of finding solutions of M-theory

which admit a hydrodynamic description by design.

9.1 Classical equations of motion for the Fermi surface

The classical equations of motion for the Fermi surface in noncritical M-theory can be

derived using the methods developed in noncritical string theory. In the classical limit, the

Fermi surface is a (possibly time-dependent) hypersurface in the four-dimensional phase

space of the system. The location of the Fermi surface in phase space can be described,

for example, by choosing p1 as the dependent variable,

p1 ≡ P (x, y,w, t). (9.1)

Here we have relabeled λ1 ≡ x, λ2 ≡ y, and p2 ≡ py ≡ w, and have Wick-rotated t back

to real time. Repeating the steps used in noncritical string theory, one can show that this

function P satisfies the following classical equation of motion,

∂tP = x − P∂xP − w∂yP − y∂wP. (9.2)

Sometimes it is convenient to use an alternative equation for the Fermi surface in the

polar coordinates, in which the phase space is parametrized by r, φ and their canonically

conjugate momenta pr and pφ ≡ J . As our dependent variable to describe the Fermi

surface, we can choose pr ≡ P(r, φ, pφ, t). The equations of motion for P are

∂tP = r +
p2

φ

r3
− P∂rP − u

r2
∂φP. (9.3)

In the rest of this section, we will study several time-independent solutions of the theory,

leaving time-dependent solutions for section 10. Needless to say, our selection of solutions

is just a small sampling.

12Note, however, that any nontrivial Fermi surface will always break at least some of the W symmetry,

and it is thus not clear whether the theory has a ground state in which the entire underlying symmetry is

unbroken.
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9.2 Vacua with q as the scaling variable

The conventional Fermi surface that defined our M-theory vacuum in much of this paper,

p2
r

2
+

p2
φ

2r2
− r2

2
= −µ (9.4)

satisfies the equation of motion, with

P(r, φ, u, t) =

√

r2 −
p2

φ

r2
− 2µ. (9.5)

So does a Fermi surface given by filling up to a fixed value of another conserved

quantity, the angular momentum:

pφ = q. (9.6)

However, the fluctuations around this surface are inconveniently parametrized in our rep-

resentation of the Fermi surface by P. We revert to the Cartesian coordinates, where this

same surface is parametrized by

p1λ2 − p2λ1 = q, (9.7)

leading to

P (x, y,w, t) =
q + wx

y
. (9.8)

This satisfies the classical equation of motion for the Fermi surface in the Cartesian co-

ordinate representation. We expect this solution to be related to two-dimensional string

backgrounds with q as the scaling variable [16, 17, 42, 20] or to AdS2 backgrounds [43, 44].

9.2.1 Duality to thermofield dynamics in the rightside-up harmonic potential

It turns out that a simple canonical transformation of the variables of our model maps

our system to the thermofield dynamics of second-quantized fermions in the rightside-up

harmonic potential.

The Fermi surface that fills all sectors up to a fixed q can be rewritten as follows.

Define

x′ =
1√
2
(x + py), px′ =

1√
2
(px − y),

y′ =
1√
2
(y + px), py′ =

1√
2
(py − x). (9.9)

In these new variables, the Fermi surface is

1

2

[
p2

x′ + (x′)2 − p2
y′ − (y′)2

]
= −q. (9.10)

This is simply a system consisting of two regular rightside-up harmonic oscillators, with

a relative sign between the two Hamiltonians. Such a combination of two copies of the

same Hamiltonian with a relative minus sign defines the real-time thermofield dynamics of

the system (see, e.g., [45]–[49] for some background). Hence, we find the rather surprising
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result, that our noncritical M-theory is dual to the thermofield dynamics of double-scaled

fermions in the rightside-up harmonic oscillator potential.

A double-scaling limit of 1 + 1 dimensional fermions in the rightside-up harmonic

potential has been studied, as the nonperturbative definition of a somewhat exotic version

of c = 1 string theory [50, 51], (see also [52, 53] for another possible viewpoint). Here we see

that this string theory is naturally embedded into our framework of noncritical M-theory.

Indeed, the string theories of [50, 51] can be obtained as solutions by repeating the steps of

section 4 in the primed variables. For example, filling only the states with a fixed value of

ν ′
2 will produce the string theory of the rightside-up harmonic oscillator studied in [50, 51].

Thermofield dynamics of a given system is not defined just by the doubling of the

degrees of freedom and specifying the Hamiltonian. An important part of the definition is

the preparation of an entangled vacuum state. In our case, this thermal state is

∑
e−EΦ/T |Φ〉 ⊗ |Φ̃〉, (9.11)

where the sum is performed over all quantum states |Φ〉 of the second-quantized rightside-

up harmonic oscillator, with EΦ the energy of |Φ〉). In accord with the philosophy of

section 3.3, this thermal state of the thermofield dynamics of the rightside-up harmonic

oscillator will be on the moduli space of all solutions of noncritical M-theory.

We also note in passing that if one performs the particle-hole duality on just one of

the two upside-down oscillators that define noncritical M-theory, the Hamiltonian becomes

that of the thermofield dynamics of one upside-down harmonic oscillator.

9.3 A family of stationary solutions

Clearly, a bigger class of time-independent classical solutions is obtained by combining the

two conserved quantities, E and J , and postulating a Fermi surface

1

2

(
p2

x + p2
y − x2 − y2

)
+ Ω (pxy − pyx) = −µ, (9.12)

where Ω is a constant parameter. Since Ω serves as the chemical potential for the conserved

angular momentum J , it can be interpreted as the angular velocity, leading to a simple

interpretation of this solution as uniformly rotating. The vacuum energy of this state can

again be evaluated exactly, as follows. In the polar coordinate representation of the model,

the Fermi surface (9.12) can be viewed in each sector of fixed J = q as the Type 0A

theory with RR flux q and the Fermi sea filled up to a q-dependent Fermi level, effectively

replacing µ by µ + Ωq. The summation over all values of q then leads to

∂ρ(µ,Ω)

∂µ
=

1

2πω0
Im

∫ ∞

0
dτ

∑

q∈Z

e−i(µ+Ωq)τ ω0τ

sinh(ω0τ)
e−|q|ω0τ

=
1

2πω0
Im

∫ ∞

0
dτ e−iµτ ω0τ

cosh(ω0τ) − cos(Ωτ)
, (9.13)

where we have temporarily restored the dependence on ω0. Integrating (9.13) once, we get

ρ(µ,Ω) =
1

2π
Re

∫ ∞

0
dτ e−iµτ 1

cosh(ω0τ) − cos(Ωτ)
. (9.14)
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This again requires a cutoff at the lower integration limit τ ∼ 0.

In this family of solutions, the two conserved time-independent charges H and J have

been essentially put on an equal footing. The main difference between them is that one

of them is compact and the other one is not. In string theory, the µ and q are related to

the string coupling and the RR flux, respectively, but from the higher-dimensional vantage

point of noncritical M-theory they are much more closely related. We believe that this M-

theory perspective may be at the core of some of the surprising patterns observed recently

in the behavior of two-dimensional strings in [54].

9.4 A twisted M-theory state

There is a simple variation of the M-theory state, which illustrates several interesting points.

This state | M̃, µ〉 is defined by filling all states in sectors with even angular momentum q

up to a Fermi surface −µ, while filling all sectors with odd q down to −µ:

aq(ν) | M̃, µ〉 = 0 for

{
ν > −µ, q even,

ν < −µ, q odd,

a†q(ν) | M̃, µ〉 = 0 for

{
ν < −µ, q even,

ν > −µ, q odd.
(9.15)

The calculation of the vacuum energy goes through as in the case of |M, µ〉, with an

additional (−1)q weighing the contribution of each sector of fixed q. This will change the

density of states to

ρfM
=

1

4π
Re

∫ ∞

0
dτ e−iµτ 1

cosh2 (ω0τ/2)
. (9.16)

This integral can again be evaluated exactly,13 leading to

ρfM
=

1

2πω2
0

µ

sinh(πµ/ω0)
. (9.17)

This solution exhibits some interesting points:

• Unlike in the case of the M-theory state |M, µ〉, the density of states and the vacuum

energy of the twisted M-theory state are cutoff independent. Moreover, the leading

term ∼ µ in the 1/µ expansion of the density of states is absent.

• In fact, the expression is fully nonperturbative in the 1/µ expansion. The exact

vacuum energy consists of an infinite series of nonperturbative terms,

F = − 1

π4ω2
0

∞∑

k=0

(
1

2k + 1

(
πµ

ω0

)2

+
2

(2k + 1)2
πµ

ω0
+

2

(2k + 1)3

)
e−(2k+1)πµ/ω0 .

(9.18)

13The integration contour is again that of figure 1, but the poles of the integrand are now at π(2k + 1)i

for k ∈ Z. Hence, the radii of the two semi-circles can be taken to zero, and only the pole at πi contributes

to the integral.
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It would be desirable to identify the precise symmetry (perhaps akin to supersym-

metry) responsible for the exact vanishing of the vacuum energy to all orders in

perturbation theory, but perhaps violated by the nonperturbative effects.

• | M̃, µ〉 should clearly be considered a hydrodynamic state, although it is somewhat

outside of the class of hydrodynamic states that solve the equations of motion for the

semiclassical Fermi surface. Indeed, due to the staggered manner of how states of

different q are filled, the average density of fermions is continuous across the surface

of Fermi energy −µ. Perhaps a more useful semiclassical observable would be the

staggered density of eigenvalues, Õ, defined as in (8.3) with an additional insertion

of (−1)q in each sector of angular momentum q.

10. Time-dependent solutions

We can generate some time-dependent solutions by continuing the strategy from the pre-

vious section. In particular, we can modify a given Fermi surface by adding conserved

quantities that explicitly contain t. This is very similar to the strategy used in noncritical

string theory in [55]–[59]. We can immediately write a family of time-dependent solutions,

by simply postulating a Fermi surface

∞∑

ni,mi=0

τm1m2n1n2
Wm1m2n1n2

(pi, λi, t) = 0, (10.1)

where Wm1m2n1n2
is the basis (8.7) of the W symmetry algebra, and τm1m2n1n2

are arbitrary

constants. Note that τ0000 effectively plays the role of the scaling variable µ, since it

multiplies the central element W0000 ∼ 1 of the symmetry algebra.

The family of static solutions (9.12) is in this class, with only τ1010 = +τ0101, τ1001 =

−τ0110, and τ0000 nonzero.

We can now look at some examples of time-dependent solutions from this class.

10.1 Losing or gaining a dimension

The simplest time-dependent solutions are obtained by adding to the Hamiltonian terms

linear in ai and bi. Of such solutions, the simplest will give the following time-dependent

Fermi surface,
1

2

(
p2

x + p2
y − x2 − y2

)
+ c(py − y)et = −µ, (10.2)

where c = τ0001/
√

2 is a constant. In the asymptotic past, t → −∞, the effect of the time-

dependent deformation is negligible, and the Fermi surface approaches the static Fermi

surface of the M-theory vacuum in 2 + 1 dimensions. At late times t → ∞, however, the

Fermi sea is partially drained. Another, similar solution is given by

1

2

(
p2

x + p2
y − x2 − y2

)
+

c̃

2
(py − y)2e2t = −µ, (10.3)

wit c̃ = τ0002 again a constant. This again describes a solution that starts off as the

M-theory vacuum, whose Fermi sea is drained at late times everywhere except along the
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hypersurface y = py, where the Fermi sea stays at −µ. Along this hypersurface, the

conserved quantity νy ≡ a2b2 vanishes. Recalling our construction of the Type 0B string

theory vacuum in M-theory, in which only states with νy = 0 were filled up to Fermi level

−µ, it is natural to identify the time-dependent solution (10.3) as decaying at late times

into the Type 0B vacuum. In the process, the effective spacetime dimension changes from

2 + 1 to 1 + 1.

Similarly, solutions with τ0010 or τ0020 nonzero will correspond to the time reversal

of (10.2) and (10.3),

1

2

(
p2

x + p2
y − x2 − y2

)
− c(py + y)e−t = −µ, (10.4)

and
1

2

(
p2

x + p2
y − x2 − y2

)
+

c̃

2
(py + y)2e−2t = −µ. (10.5)

In particular, (10.5) can be interpreted as the time-dependent Fermi surface of a solution

that starts off as the Type 0B vacuum at early times, and then evolves into the M-theory

vacuum at late times.

10.2 Solutions interpolating between two string vacua

The ingredients of time-dependent solutions from the previous subsection can be easily

combined, to construct a solution interpolating between two string theories, via an inter-

mediate M-theory phase. Consider for example

1

2

(
p2

x + p2
y − x2 − y2

)
+

1

2

[
c1(px − x)2 + c2(py − y)2

]
e2t

+
1

2

[
c3(px + x)2 + c4(py + y)2

]
e−2t = −µ. (10.6)

Here c1, . . . , c4 are again constants that can be chosen arbitrarily. With only c1 and c4

nonzero and positive, (10.6) is the Fermi surface of a time-dependent solution that starts

at early times as Type 0B with x playing the role of the spatial dimension, and decays

at late times into another Type 0B vacuum, now with y playing the role of the spatial

dimension. At times of order t ≈ 0, this solution is going through a 2 + 1 dimensional

M-theory phase, with the Fermi surface filled more democratically in the x, y plane.

In principle, even though the spacetime dimension may be changing, the free fermion

formulation still defines a unitary quantum evolution, and can be used to define an S-

matrix between initial and final states, as defined in the asymptotic Type 0B string vacua

where they are represented by the massless modes of the Type 0B tachyon. This is a

novelty compared to time-dependent solutions found in two-dimensional string theory [55]–

[59]: We can now have “decays” of spacetime with well-understood initial and final states

simultaneously, both being described by a known semiclassical string vacuum. Cosmological

decays into “nothing” are also possible, for example with both c1 and c2 nonzero.

Clearly, vast families of similar solutions exist, and one can engineer solutions that for

example begin in the Type 0A vacuum and evolve into the Type 0B vacuum.
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11. Conclusions

In this paper, we have presented a fully nonperturbative definition of noncritical M-theory

in 2 + 1 dimensions, in terms of a double-scaling limit of a nonrelativistic Fermi liquid.

Clearly, in our analysis of this theory, we have only scratched the proverbial surface. The

exact solvability of the model allows one to extract a wealth of data about this incarnation of

M-theory, including detailed information about some of its exotic time-dependent solutions.

The theory is fully defined as a quantum-mechanical theory in terms of the fermions,

even in regimes where a semiclassical spacetime interpretation ceases to be valid. In this

picture, the fundamental degrees of freedom of M-theory are the elementary fermions of

the Fermi liquid.

The fundamental fermions originate in the underlying system of D0- and anti D0-

branes of the two-dimensional Type 0A string theory. In this respect, our nonperturbative

definition of noncritical M-theory bears striking resemblance to M(atrix) theory [60]–[62]

— another candidate for a nonperturbative formulation of M-theory, defined in terms of

the supersymmetric quantum mechanics of N D0-branes of Type IIA string theory in the

Sen-Seiberg scaling limit. A possible relation between these two approaches might involve

ideas presented in [63].

Our noncritical M-theory provides a unified framework for the dynamics of two-

dimensional noncritical strings. Noncritical strings can be embedded into critical string

theory via their relation to the topological strings on singular Calabi-Yau manifolds (see,

e.g., [64]). Since the latter have been conjecturally related to a topological M-theory in

seven dimensions [65], it would be interesting to see whether an embedding of our non-

critical M-theory into critical string/M-theory can shed light on the seven-dimensional

topological M-theory.

Using the Fermi liquid picture, we have established that noncritical M-theory in 2 + 1

dimensions can be defined. However, many open questions clearly remain. For example,

it is unclear how to formulate this theory directly in terms of a matrix model. An even

more pressing challenge is to understand the effective spacetime description of noncritical

M-theory vacua, in a language that directly refers to gravity in 2 + 1 dimensions. Guided

by noncritical string theory, we expect that such an effective spacetime gravity description

indeed exists. In this description, we expect a propagating degree of freedom — the M-

theory analog of the massless tachyon — coupled to a gravitational sector. In noncritical

string theory, the relationship between the eigenvalue space and the spacetime Liouville

dimension is known to be subtle, involving a nonlocal Laplace-like transform. Finding its

analog in noncritical M-theory represents one of the main challenges. It is also natural to

ask what is the full spectrum of solitons in the theory, and in particular, whether or not

the noncritical M-theory vacuum contains membranes.

In its fermionic formulation, our noncritical M-theory is a rather unique theory, spec-

ified by the underlying infinite W symmetry of its Lagrangian.14 One natural extension,

compatible with the W symmetry, would be the addition of spin to the fermions. Perhaps

this possibility may be related to the existence of two different RR gauge fields in Type

14This point emerged from discussions with Shamit Kachru.
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0A theory. In principle, one can also try to include the nonsinglet states,15 although it

is unclear — in the absence of a direct matrix model formulation — how they can be

accommodated and what physical role they will play in the theory.

As to the hope that noncritical M-theory may teach us valuable lessons about the

mysterious aspects of M-theory, it is encouraging to see that this theory is described by an

exactly solvable system. Exact results for various physical observables are now in principle

available, and the challenge is to interpret them and draw the corresponding lessons. The

exact evaluation of the vacuum energy in M-theory (essentially, the cosmological constant

of the vacuum) performed in this paper is an example, in which several surprising features

have been observed.

Our noncritical M-theory may also be of interest from the general viewpoint of quantum

gravity. In 2 + 1 dimensions, there are essentially two successful approaches to quantum

gravity, each with its own drawbacks. The first one is the Chern-Simons formulation [66,

67], in which the topological nature of the theory is prominent. However, it is difficult

to include any propagating degrees of freedom in this framework. The second possibility

is to study compactifications of the full critical string/M theory to 2 + 1 dimensions, for

example on AdS3. This also defines a consistent quantum gravitational system, at the cost

of carrying the entire baggage of the stringy and KK degrees of freedom. The noncritical

M-theory defined in this paper may represent a middle road to quantum gravity in 2 + 1

dimensions, allowing a propagating degree of freedom but sharing some of the topological

features with the Chern-Simons approach.

It is worth pointing out that noncritical M-theory represents a framework in which

the physical spacetime is an emergent property, available only for those solutions of the

underlying quantum mechanical system that admit a hydrodynamic description. Moreover,

this theory seems to be a realization of Mach’s principle [68]: The semiclassical physical

spacetime is sustained by the collective motion of N fundamental constituent fermions.

Without the constituents, there is no hydrodynamics of the Fermi liquid, and consequently

no spacetime.
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